Uncertainty quantification for iterative algorithms in linear models with application to early stopping

Bellec C. Pierre and **Kai Tan** Department of Statistics, Rutgers University

Gap between theory and practice

 \blacksquare For linear model $\boldsymbol{y} = \boldsymbol{X}\boldsymbol{b}^* + \boldsymbol{\varepsilon}$, statistical theories (e.g., error bounds, asymptotic distributions, risk characterization) focus on the optimizer \bm{b} :

$$
\widehat{\boldsymbol{b}} \in \arg\min_{\boldsymbol{b}\in\mathbb{R}^p} \frac{1}{2n} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{b}\|^2 + g(\boldsymbol{b})
$$

- \odot In practice, \hat{b} cannot be solved exactly; iterative algorithms are used to produce iterates $\widehat{\boldsymbol{b}}^1, \widehat{\boldsymbol{b}}^2, ..., \widehat{\boldsymbol{b}}^T$ (stop after T iterations).
- $\bm{\widehat{\omega}}$ $\widehat{\bm{b}}^T$ can be far from $\widehat{\bm{b}}$, and the theories about $\widehat{\bm{b}}$ do not apply to $\widehat{\bm{b}}^T.$

 \odot There is no guarantee that $\widehat{\bm{b}}^t$ will get closer to \bm{b}^* as t increases.

Q1: How can we quantify the predictive performance of \widehat{b}^t at each iteration? **Q2:** How does the performance of \widehat{b}^t depend on the previous iterates? Q3: How can we perform statistical inference on \boldsymbol{b}^* using the iterate $\widehat{\boldsymbol{b}}^t?$

> $\| \cdot \|$ $\frac{1}{2}$ \prod 2

 ${\bm e}_j/n$

- A1: The design matrix $\boldsymbol{X} \in \mathbb{R}^{n \times p}$ has i.i.d. rows from $N(\boldsymbol{0},\boldsymbol{\Sigma})$ with an invertible **Σ**.
- A2: The noise $\boldsymbol{\varepsilon}$ is independent of \boldsymbol{X} and has i.i.d. entries from $N(0,\sigma^2).$
- A3: The asymptotic regime is $n \to \infty$ and $p \to \infty$ with $\frac{p}{n} \le \gamma \in (0, \infty)$.
- A4: The algorithm starts with $\widehat{\bm{b}}^1 = \bm{0}_p$ and \bm{g}_t in Equation (1) is ζ -Lipschitz with $g_t(0) = 0.$

Estimation Target

Consider an algorithm of the following form:

 $\widehat{\bm{b}}^t = \bm{g}_t(\widehat{\bm{b}}^{t-1}, \widehat{\bm{b}}^{t-2}, \ldots, \widehat{\bm{b}}^2, \widehat{\bm{b}}^1, \ \bm{v}^{t-1}, \ldots, \bm{v}^2, \bm{v}^1$ where $\boldsymbol{v}^t = \frac{1}{n}$ *n* $\boldsymbol{X}^\top (\boldsymbol{y} - \boldsymbol{X} \widehat{\boldsymbol{b}}^t).$

)*,* (1)

Table 1. Examples of several algorithms

)

 $(t-2 + \eta \boldsymbol{v}^{t-2})$

 $|||^{2} + \sigma^{2}.$

Estimation target: The generalization error r_t for each $\widehat{\boldsymbol{b}}^t$:

 $\mathbb{E}[|\hat{r}_t - r_t|] \leq$ 1 $\frac{1}{\sqrt{2\pi}}$ *n*

Let $\hat{t} \stackrel{\text{def}}{=} \arg \min_{t \in [T]} \hat{r}_t$. For any $c \in (0, 1/2)$, we have: $\mathbb{P}^{\binom{2}{2}}$ $||\mathbf{\Sigma}^{1/2}(\hat{\boldsymbol{b}}^{\hat{t}} - \boldsymbol{b}^*)||^2 \leq \min_{\mathbf{c} \in [T]}$ $||\mathbf{\Sigma}^{1/2}(\hat{\boldsymbol{b}}^{s} - \boldsymbol{b}^{*})||^{2} +$ var(*y*1)

$$
r_t \stackrel{\text{\tiny def}}{=} \mathbb{E}\big[(y_{new} - \boldsymbol{x}_{new}^\top \boldsymbol{\hat{b}}^t)^2 \mid (\boldsymbol{X}, \boldsymbol{y})\big] = \|\boldsymbol{\Sigma}^{1/2} (\boldsymbol{\hat{b}}^t - \boldsymbol{b}^*)\|^2
$$

Under Assumptions A1 - A4. There exists a set $J_{n,p}$ ⊂ [p] with $|J_{n,p}| \ge p - \log p$ such that √

- $\overline{n}(\bm{b}%)\equiv\overline{n}(\bm{b})\equiv\overline{n}(\bm{b})$ *t,*debias $\frac{t,{\rm debias}}{j}-\bm{b}^*_{j}$ $\binom{*}{j}$ $\|\mathbf{\Sigma}^{-1/2} \mathbf{e}_j\|$ √ $\overline{\hat{r}_{t}}$
- \bullet The asymptotic variance is proportional to \hat{r}_t .
- \bullet Suggest picking the t with smallest \hat{r}_t for inference tasks.

Contributions

Propose a novel estimator of *r^t* :

$$
\frac{\|\boldsymbol{\Sigma}^{1/2}(\boldsymbol{\hat{b}}^t - \boldsymbol{b}^*)\|^2 + \sigma^2}{r_t} \approx \frac{1}{n} \Big\|\sum_{s=1}^t \hat{w}_{t,s} \big(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\hat{b}}^s\big)\Big\|^2}{\hat{r}_t}
$$

- \bullet The \hat{r}_t depends on the weighted residual vector of all previous iterates.
- \bullet The weights $\hat{w}_{t,s}$ can be easily computed using observational quantities.
- Introduce the debiased estimate for the component of each iterate $\widehat{\boldsymbol{b}}^t$:

$$
\widehat{\bm{b}}_j^{t,\text{debias}} \stackrel{\text{def}}{=} \underbrace{\widehat{\bm{b}}_j^t}_{\text{iterate}} + \underbrace{\sum_{s=1}^t \hat{w}_{t,s} \big(\bm{y} - \bm{X} \widehat{\bm{b}}^s\big)^{\top} \bm{X} \bm{\Sigma}^{-1} \bm{\epsilon}}_{\text{iterate}}
$$

bias correction

Establish asymptotic normality results for \bm{b}_j^* using the debiased estimate:

$$
\frac{\sqrt{n}(\widehat{\boldsymbol{b}}_{j}^{t,\text{debias}} - \boldsymbol{b}_{j}^{*})}{\|\boldsymbol{\Sigma}^{-1/2} \boldsymbol{e}_{j}\| \sqrt{\widehat{r}_{t}}} \xrightarrow{d} N(0, 1).
$$

Assumptions

Theorem 1: Estimation of *r^t*

Assume conditions A1 - A4 hold, then for any $t \in [T]$:

$$
C(\zeta, T, \gamma, \kappa) \text{var}(y_1). \tag{2}
$$

s∈[*T*]

 $\bm{\mathbb{C}}$ The proposed estimator \hat{r}_t is √ \overline{n} -consistent for r_t . \bullet Minimizing \hat{r}_t can lead to an optimal stopping time with negligible error.

$$
\frac{\text{var}(y_1)}{n^{1/2-c}} \Big) \ge 1 - \frac{C(\zeta,\gamma,T,\kappa)}{n^c} \to 1.
$$

Theorem 2: Inference for *b* ∗ *j*

$$
\xrightarrow{\mathrm{d}} N(0,1) \quad \text{for any } j \in J_{n,p}.\tag{3}
$$

Summary

- **D** Proposed a novel √ \overline{n} **-consistent estimator** for the generalization error of iterates along the trajectories of widely used algorithms.
- \bullet The form of the estimator depends on a weighted residual vector of all previous iterates. The weights are algorithm-specific and can be efficiently calculated.
- ◆ The proposed risk estimators can serve as a proxy for the generalization error, aiding in **early stopping** decisions.
- \bullet Established a **valid asymptotic normality result** by debiasing each $\widehat{\bm{b}}^t,$ which can be used for statistical inferences.

Reference

Bellec, Pierre C., and Kai Tan. Uncertainty quantification for iterative algorithms in linear models with application to early stopping. arXiv preprint arXiv:2404.17856 (2024).

Numerical experiments

Figure 3. Risk curves and Q-Q plots for **ISTA** with $(n, p) = (1200, 1500)$