

Gap between theory and practice

• For linear model $y = Xb^* + \epsilon$, statistical theories (e.g., error bounds, asymptotic distributions, risk characterization) focus on the optimizer \hat{b} :

$$\widehat{\boldsymbol{b}} \in \arg\min_{\boldsymbol{b}\in\mathbb{R}^p} \frac{1}{2n} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{b}\|^2 + g(\boldsymbol{b})$$

 \bigcirc In practice, $\widehat{m{b}}$ cannot be solved exactly; iterative algorithms are used to produce iterates $\widehat{b}^1, \widehat{b}^2, ..., \widehat{b}^T$ (stop after T iterations).

 $\widehat{\boldsymbol{b}}^T$ can be far from $\widehat{\boldsymbol{b}}$, and the theories about $\widehat{\boldsymbol{b}}$ do not apply to $\widehat{\boldsymbol{b}}^T$.

 \bigcirc There is no guarantee that \widehat{b}^t will get closer to b^* as t increases.

Q1: How can we quantify the predictive performance of \hat{b}^t at each iteration? **Q2:** How does the performance of \hat{b}^t depend on the previous iterates? Q3: How can we perform statistical inference on b^* using the iterate \hat{b}^t ?

Estimation Target

Consider an algorithm of the following form: $\widehat{\boldsymbol{b}}^t = \boldsymbol{g}_t(\widehat{\boldsymbol{b}}^{t-1}, \widehat{\boldsymbol{b}}^{t-2}, \dots, \widehat{\boldsymbol{b}}^2, \widehat{\boldsymbol{b}}^1, \ \boldsymbol{v}^{t-1}, \dots, \boldsymbol{v}^2, \boldsymbol{v}^1),$

where
$$\boldsymbol{v}^t = \frac{1}{n} \boldsymbol{X}^{\top} (\boldsymbol{y} - \boldsymbol{X} \widehat{\boldsymbol{b}}^t).$$

 Table 1. Examples of several algorithms

GD	$ig \widehat{oldsymbol{b}}^t = \widehat{oldsymbol{b}}^{t-1} + \eta oldsymbol{v}^t$
AGD	$\hat{b}^{t} = (1 - w_{t-1})(\hat{b}^{t-1} + \eta v^{t-1}) + w_{t-1}(\hat{b}^{t-2} + \eta v^{t-1})$
ISTA	$\widehat{\boldsymbol{b}}^t = ext{soft}_{\eta\lambda}(\widehat{\boldsymbol{b}}^{t-1} + \eta \boldsymbol{v}^t)$
FISTA	$\left \widehat{\boldsymbol{b}}^{t} = ext{soft}_{\eta\lambda}((1 - w_{t-1})(\widehat{\boldsymbol{b}}^{t-1} + \eta \boldsymbol{v}^{t-1}) + w_{t-1}(\widehat{\boldsymbol{b}}^{t-2} - w_{t-1})\right $

Estimation target: The generalization error r_t for each \hat{b}^t :

$$r_t \stackrel{\text{\tiny def}}{=} \mathbb{E}\Big[(y_{new} - \boldsymbol{x}_{new}^{\top} \widehat{\boldsymbol{b}}^t)^2 \mid (\boldsymbol{X}, \boldsymbol{y})\Big] = \|\boldsymbol{\Sigma}^{1/2} (\widehat{\boldsymbol{b}}^t - \boldsymbol{b}^*)\|^2$$

Contributions

• Propose a novel estimator of r_t :

$$\underbrace{\|\boldsymbol{\Sigma}^{1/2}(\hat{\boldsymbol{b}}^t - \boldsymbol{b}^*)\|^2 + \sigma^2}_{r_t} \approx \underbrace{\frac{1}{n} \|\sum_{s=1}^t \hat{w}_{t,s}(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{b}}^s)}_{\hat{r}_t}$$

- The \hat{r}_t depends on the weighted residual vector of all previous iterates.
- The weights $\hat{w}_{t,s}$ can be easily computed using observational quantities.
- Introduce the debiased estimate for the component of each iterate \widehat{b}^t :

$$\widehat{\boldsymbol{b}}_{j}^{t,\text{debias}} \stackrel{\text{def}}{=} \underbrace{\widehat{\boldsymbol{b}}_{j}^{t}}_{\text{iterate}} + \underbrace{\sum_{s=1}^{t} \widehat{\boldsymbol{w}}_{t,s} \left(\boldsymbol{y} - \boldsymbol{X} \widehat{\boldsymbol{b}}^{s}\right)^{\top} \boldsymbol{X} \boldsymbol{\Sigma}^{-1} \boldsymbol{e}}_{s=1}$$

bias correction

• Establish asymptotic normality results for b_i^* using the debiased estimate:

$$\frac{\sqrt{n}(\widehat{\boldsymbol{b}}_{j}^{t,\text{debias}}-\boldsymbol{b}_{j}^{*})}{\|\boldsymbol{\Sigma}^{-1/2}\boldsymbol{e}_{j}\|\sqrt{\widehat{r}_{t}}} \overset{\text{d}}{\longrightarrow} N(0,1).$$

Uncertainty quantification for iterative algorithms in linear models with application to early stopping

Bellec C. Pierre and Kai Tan Department of Statistics, Rutgers University

Assumptions

(1)

 $+ \eta \boldsymbol{v}^{t-2}))$

 $\sigma^2 + \sigma^2$.

 e_j/n

- A1: The design matrix $X \in \mathbb{R}^{n \times p}$ has i.i.d. rows from $N(\mathbf{0}, \Sigma)$ with an invertible Σ .
- A2: The noise $\boldsymbol{\varepsilon}$ is independent of \boldsymbol{X} and has i.i.d. entries from $N(0, \sigma^2)$.
- A3: The asymptotic regime is $n \to \infty$ and $p \to \infty$ with $\frac{p}{n} \leq \gamma \in (0, \infty)$.
- A4: The algorithm starts with $\hat{b}^1 = \mathbf{0}_p$ and g_t in Equation (1) is ζ -Lipschitz with $\boldsymbol{g}_t(0) = 0.$

Theorem 1: Estimation of r_t

Assume conditions A1 - A4 hold, then for any $t \in [T]$:

 $\mathbb{E}[|\hat{r}_t - r_t|] \le \frac{1}{\sqrt{n}} C(\zeta, \zeta)$

Let $\hat{t} \stackrel{\text{\tiny def}}{=} \arg\min_{t \in [T]} \hat{r}_t$. For any $c \in (0, 1/2)$, we have:

 $\mathbb{P}\Big(\|\boldsymbol{\Sigma}^{1/2}(\widehat{\boldsymbol{b}}^{\widehat{t}}-\boldsymbol{b}^*)\|^2 \leq \min_{s\in[T]}\|\boldsymbol{\Sigma}^{1/2}(\widehat{\boldsymbol{b}}^s-\boldsymbol{b}^*)\|^2 + \frac{1}{2}$

 \bigcirc The proposed estimator \hat{r}_t is \sqrt{n} -consistent for r_t . \bigcirc Minimizing \hat{r}_t can lead to an optimal stopping time with negligible error.

Theorem 2: Inference for b_i^*

Under Assumptions A1 - A4. There exists a set $J_{n,p} \subset [p]$ with $|J_{n,p}| \geq p - \log p$ such that

- $\frac{\sqrt{n}(\hat{\boldsymbol{b}}_{j}^{t,\text{debias}}-\boldsymbol{b}_{j}^{*})}{\|\boldsymbol{\Sigma}^{-1/2}\boldsymbol{e}_{j}\|\sqrt{\hat{r}_{t}}} \xrightarrow{d} N(0,1) \quad \text{for any } j \in J_{n,p}.$
- The asymptotic variance is proportional to \hat{r}_t .
- Suggest picking the t with smallest \hat{r}_t for inference tasks.

Summary

- \heartsuit Proposed a novel \sqrt{n} -consistent estimator for the generalization error of iterates along the trajectories of widely used algorithms.
- The form of the estimator depends on a weighted residual vector of all previous iterates. The weights are algorithm-specific and can be efficiently calculated.
- The proposed risk estimators can serve as a proxy for the generalization error, aiding in **early stopping** decisions.
- \mathbf{O} Established a valid asymptotic normality result by debiasing each $\hat{\mathbf{b}}^t$, which can be used for statistical inferences.

Reference

Bellec, Pierre C., and Kai Tan. Uncertainty quantification for iterative algorithms in linear models with application to early stopping. arXiv preprint arXiv:2404.17856 (2024).

$$T, \gamma, \kappa) \operatorname{var}(y_1).$$
 (2)

$$\frac{\operatorname{var}(y_1)}{n^{1/2-c}} \ge 1 - \frac{C(\zeta, \gamma, T, \kappa)}{n^c} \to 1.$$

(3)

Numerical experiments

Figure 3. Risk curves and Q-Q plots for ISTA with (n, p) = (1200, 1500)