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Gap between theory and practice

For linear model y = Xb∗ + ε, statistical theories (e.g., error bounds,
asymptotic distributions, risk characterization) focus on the optimizer b̂:

b̂ ∈ arg min
b∈Rp

1
2n

‖y − Xb‖2 + g(b)

� In practice, b̂ cannot be solved exactly; iterative algorithms are used to
produce iterates b̂1, b̂2, ..., b̂T (stop after T iterations).

� b̂T can be far from b̂, and the theories about b̂ do not apply to b̂T .

� There is no guarantee that b̂t will get closer to b∗ as t increases.

Q1: How can we quantify the predictive performance of b̂t at each iteration?

Q2: How does the performance of b̂t depend on the previous iterates?

Q3: How can we perform statistical inference on b∗ using the iterate b̂t?

Estimation Target

Consider an algorithm of the following form:

b̂t = gt(b̂t−1, b̂t−2, . . . , b̂2, b̂1, vt−1, . . . , v2, v1), (1)

where vt = 1
nX>(y − Xb̂t).

Table 1. Examples of several algorithms

GD b̂t = b̂t−1 + ηvt

AGD b̂t = (1 − wt−1)(b̂t−1 + ηvt−1) + wt−1(b̂t−2 + ηvt−2)
ISTA b̂t = softηλ(b̂t−1 + ηvt)
FISTA b̂t = softηλ((1 − wt−1)(b̂t−1 + ηvt−1) + wt−1(b̂t−2 + ηvt−2))

Estimation target: The generalization error rt for each b̂t:

rt
def= E

[
(ynew − x>

newb̂t)2 | (X, y)
]

= ‖Σ1/2(b̂t − b∗)‖2 + σ2.

Contributions

Propose a novel estimator of rt:

‖Σ1/2(b̂t − b∗)‖2 + σ2︸ ︷︷ ︸
rt

≈ 1
n

∥∥∥ t∑
s=1

ŵt,s

(
y − Xb̂s

)∥∥∥2

︸ ︷︷ ︸
r̂t

• The r̂t depends on the weighted residual vector of all previous iterates.

• The weights ŵt,s can be easily computed using observational quantities.

Introduce the debiased estimate for the component of each iterate b̂t:

b̂t,debias
j

def= b̂t
j︸︷︷︸

iterate

+
t∑

s=1
ŵt,s

(
y − Xb̂s

)>
XΣ−1ej/n︸ ︷︷ ︸

bias correction

Establish asymptotic normality results for b∗
j using the debiased estimate:

√
n(b̂t,debias

j − b∗
j)

‖Σ−1/2ej‖
√

r̂t

d−→N(0, 1).

Assumptions

A1: The design matrix X ∈ Rn×p has i.i.d. rows from N(0, Σ) with an invertible
Σ.

A2: The noise ε is independent ofX and has i.i.d. entries from N(0, σ2).
A3: The asymptotic regime is n → ∞ and p → ∞ with p

n ≤ γ ∈ (0, ∞).
A4: The algorithm starts with b̂1 = 0p and gt in Equation (1) is ζ-Lipschitz with

gt(0) = 0.

Theorem 1: Estimation of rt

Assume conditions A1 - A4 hold, then for any t ∈ [T ]:

E[|r̂t − rt|] ≤ 1√
n

C(ζ, T, γ, κ)var(y1). (2)

Let t̂
def= arg mint∈[T ] r̂t. For any c ∈ (0, 1/2), we have:

P
(

‖Σ1/2(b̂t̂ − b∗)‖2 ≤ min
s∈[T ]

‖Σ1/2(b̂s − b∗)‖2 + var(y1)
n1/2−c

)
≥ 1 − C(ζ, γ, T, κ)

nc
→ 1.

� The proposed estimator r̂t is
√

n-consistent for rt.

� Minimizing r̂t can lead to an optimal stopping time with negligible error.

Theorem 2: Inference for b∗
j

UnderAssumptions A1 -A4. There exists a set Jn,p ⊂ [p]with |Jn,p| ≥ p−log p
such that √

n(b̂t,debias
j − b∗

j)
‖Σ−1/2ej‖

√
r̂t

d−→N(0, 1) for any j ∈ Jn,p. (3)

• The asymptotic variance is proportional to r̂t.

• Suggest picking the t with smallest r̂t for inference tasks.

Summary

� Proposed a novel
√

n-consistent estimator for the generalization error of
iterates along the trajectories of widely used algorithms.

� The form of the estimator depends on a weighted residual vector of all

previous iterates. The weights are algorithm-specific and can be

efficiently calculated.

� The proposed risk estimators can serve as a proxy for the generalization

error, aiding in early stopping decisions.

� Established a valid asymptotic normality result by debiasing each b̂t,

which can be used for statistical inferences.
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Numerical experiments

The goals: to confirm (1) r̂t ≈ rt, (2)
√

n(b̂t,debias
j −b∗

j)
‖Σ−1/2ej‖

√
r̂t

d−→N(0, 1) for all t.
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(b) Q-Q plots at different iteration t

Figure 1. Risk curves and Q-Q plots for GD with (n, p) = (1200, 500)
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(b) Q-Q plots at different iteration t

Figure 2. Risk curves and Q-Q plots for AGD with (n, p) = (1200, 1200)
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Figure 3. Risk curves and Q-Q plots for ISTA with (n, p) = (1200, 1500)


