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Gap between theory and practice

" For linear model y = X b* + ¢, statistical theories (e.g., error bounds,
asymptotic distributions, risk characterization) focus on the optimizer b:
1

b € arg min |y — Xb]* + g(b)

® In practice, b cannot be solved exactly; iterative algorithms are used to
produce iterates b', b?, .... b' (stop after T iterations).

® b! can be far from b, and the theories about b do not apply to 7.

® There is no guarantee that b’ will get closer to b* as ¢ increases.

Q1: How can we guantify the predigh’ve nerformance of bt at each iteration?
Q2: How does the performance of b' depend on the previous iterates?
Q3: How can we perform statistical inference on b* using the iterate b'?

Estimation Target

Consider an algorithm of the following form:
b = gt(gt_l, b2 ... b2 b v P v'), (1)
where v' = 1 X T(y — Xb).

Table 1. Examples of several algorithms

GD |bt = pt! 4 m]t

AGD b’ = (1 — w—1)(b"" + 7o"!) + w1 (b2 + ')

ISTA  b" = soft,\(b'! + no')

FISTA|b' = soft\((1 — we_q) (" + no' ™) 4+ w1 (b + no'~2))

Estimation target: The generalization error r; for each b':
Tt = L [(ynew — m;_ewgt)z | (Xa y)} — HEl/Q(Bt o b*)HQ + 02'

Contributions

= Propose a novel estimator of ry:

~ t o~
[0 = B+ 0% | > i (y - Xb) :

-~

Tt

e The 1, depends on the weighted residual vector of all previous iterates.
e [he weights w4 can be easily computed using observational quantities.

* Introduce the debiased estimate for the component of each iterate b':

J

pldebias def b;. + Z Wt (y - sz) TXZ]_lej/n
s=1

Iterate N ~— <
bias correction

" Establish asymptotic normality results for b using the debiased estimate:

AN

\/ﬁ(bz,debias o bj;)
|21 e[V

: >IN (0,1).
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Assumptions

Al: The design matrix X € R"*P has i.i.d. rows from N (0, 33) with an invertible
>

A2: The noise € is independent of X and has i.i.d. entries from N(0, o%).
A3: The asymptotic regime is n — oo and p — oo with & < v € (0, 00).

A4: The algorithm starts with b! = 0, and g; in Equation (1) is ¢-Lipschitz with
g:(0) = 0.

Theorem 1: Estimation of r;

Assume conditions A1 - A4 hold, then for any t € [T

1
0|7 — 1] < —nC(Q Ty, k)var(y). (2)
Let ¢ = arg min,cpy 7. Forany ¢ € (0,1/2), we have:
. - 1
P26 b < min 1825 b7+ ) 5 GO TRy
selT] nl/2—c ne

© The proposed estimator 7 is y/n-consistent for r;.

© Minimizing #; can lead to an optimal stopping time with negligible error.

Theorem 2: Inference for bj

Under Assumptions Al - A4. There exists aset J, , C [p| with |J,,| > p—logp
such that

\/ﬁ(bz,debias B bj)
|21 %[ V/7y

e [he asymptotic variance is proportional to 7.

LN(0,1)

forany 7 € J,,. (3)

e Suggest picking the ¢t with smallest 7, for inference tasks.

Summary

IQJTGERS In Linear models with application to early stopping

Numerical experiments

® Proposed a novel y/n-consistent estimator for the generalization error of
iterates along the trajectories of widely used algorithms.

® The form of the estimator depends on a weighted residual vector of all
previous iterates. The weights are algorithm-specific and can be
efficiently calculated.

® The proposed risk estimators can serve as a proxy for the generalization
error, aiding in early stopping decisions.

® Established a valid asymptotic normality result by debiasing each &',
which can be used for statistical inferences.
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7.t,debias *
The goals: to confirm (1) 7, ~ 1y, (2) @?{/QQ.H%> s >IN (0,1) for all ¢.
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Figure 1. Risk curves and Q-Q plots for GD with (n, p) = (1200, 500)
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Figure 2. Risk curves and Q-Q plots for AGD with (n, p) = (1200, 1200)
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Figure 3. Risk curves and Q-Q plots for ISTA with (n, p) = (1200, 1500)




